GuirlVG: Incentivize GUI Visual Grounding via Empirical Exploration on Reinforcement Learning
Weitai Kang, Bin Lei, Gaowen Liu, Caiwen Ding, Yan Yan
ml systems llm agents
ICLR 2026
ULD-Net: Enabling UltraLow-Degree Fully Polynomial Networks for Homomorphically Encrypted Inference
Xi Xie, Ran Ran, Jiahui Zhao, Bin Lei, Zhijie Jerry Shi, Wujie Wen, Caiwen Ding
privacy ml ml systems
ICLR 2026
HDLxGraph: Bridging Large Language Models and HDL Repositories via HDL Graph Databases
Pingqing Zheng, Jiayin Qin, Fuqi Zhang, Niraj Chitla, Zishen Wan, Shang Wu, Yu Cao, Caiwen Ding, Yang Zhao
ml for eda llm agents
ASP-DAC 2026
InfantAgent-Next: A Multimodal Generalist Agent for Automated Computer Interaction
Bin Lei, Weitai Kang, Zijian Zhang, Winson Chen, Xi Xie, Shan Zuo, Mimi Xie, Ali Payani, Mingyi Hong, Yan Yan, Caiwen Ding
llm agents ml systems
NeurIPS 2025
Harmony in Divergence: Towards Fast, Accurate, and Memory-efficient Zeroth-order LLM Fine-tuning
Qitao Tan, Jun Liu, Zheng Zhan, Caiwen Ding, Yanzhi Wang, Xiaolong Ma, Jaewoo Lee, Jin Lu, Geng Yuan
ml systems
NeurIPS 2025
MAHL: Multi-Agent LLM-Guided Hierarchical Chiplet Design with Adaptive Debugging
Jinwei Tang, Jiayin Qin, Nuo Xu, Pragnya Sudershan Nalla, Yu Cao, Yang Zhao, Caiwen Ding
ml for eda llm agents
ICCAD 2025
GROOT: Graph Edge Re-growth and Partitioning for the Verification of Large Designs in Logic Synthesis
Kiran Thorat, Hongwu Peng, Yuebo Luo, Xi Xie, Shaoyi Huang, Amit Hasan, Jiahui Zhao, Yingjie Li, Zhijie Shi, Cunxi Yu, Caiwen Ding
ml for eda gnn
ICCAD 2025
HiVeGen: Hierarchical LLM-based Verilog Generation for Scalable Chip Design
Jinwei Tang, Jiayin Qin, Kiran Thorat, Chen Zhu-Tian, Yu Cao, Yang Zhao, Caiwen Ding
ml for eda llm agents
ICLAD 2025
Best Paper Award
Advancing Adversarial Robustness in GNeRFs: The IL2-NeRF Attack
Nicole Meng, Caleb Manicke, Ronak Sahu, Caiwen Ding, Yingjie Lao
cv nlp
CVPR 2025
RTop-K: Ultra-Fast Row-Wise Top-K Selection for Neural Network Acceleration on GPUs
Xi Xie*, Yuebo Luo*, Hongwu Peng*, Caiwen Ding
ml systems architecture
ICLR 2025
Position-Enhanced Gradient Attack (PEGA) on Medical Language Models
Nuo Xu, Christopher Stanley, John Gounley, Heidi Hanson, Chang Ge, Caiwen Ding
privacy ml cv nlp
MMAsia 2025
DR-CircuitGNN: Training Acceleration of Heterogeneous Circuit Graph Neural Network on GPUs
Yuebo Luo, Shiyang Li, Junran Tao, Kiran Gautam Thorat, Xi Xie, Hongwu Peng, Nuo Xu, Caiwen Ding, Shaoyi Huang
gnn architecture
ICS 2025
Graph Convolutional Network Acceleration Using Adiabatic Superconductor Josephson Devices
Zhengang Li, Hongwu Peng, Xuan Shen, Masoud Zabihi, Xi Xie, Geng Yuan, Yanzhi Wang, Olivia Chen, Caiwen Ding
gnn emerging tech
ICS 2025
TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
Kiran Thorat, Amit Hasan, Caiwen Ding, Zhijie Shi
gnn ml for eda
IJCNN 2025
LUMEN-PRO: Automating Multi-Task Learning on Optical Neural Networks with Weight Sharing and Physical Rotation
Shanglin Zhou, Yingjie Li, Weilu Gao, Cunxi Yu, Caiwen Ding
emerging tech
Scientific Reports 2025
MACM: Utilizing a Multi-Agent System for Condition Mining in Solving Complex Mathematical Problems
Bin Lei, Yi Zhang, Shan Zuo, Ali Payani, Caiwen Ding
NeurIPS 2024
Additional Conference Publications
-
AdaDiff: Accelerating Diffusion Models through Step-Wise Adaptive Computation
Shengkun Tang, Yaqing Wang, Caiwen Ding, Yi Liang, Yao Li, Dongkuan Xu
ECCV 2024 -
AdaPI: Facilitating DNN Model Adaptivity for Efficient Private Inference in Edge Computing
Tong Zhou, Jiahui Zhao, Yukui Luo, Xi Xie, Wujie Wen, Caiwen Ding, Xiaolin Xu
ICCAD 2024 -
MaxK-GNN: Towards Theoretical Speed Limits for Accelerating Graph Neural Networks Training
Hongwu Peng*, Xi Xie*, Kaustubh Shivdikar, MD Amit Hasan, Jiahui Zhao, Shaoyi Huang, Omer Khan, David Kaeli, Caiwen Ding
ASPLOS 2024 -
PruneGNN: An Optimized Algorithm-Hardware Framework for Graph Neural Network Pruning
Deniz Gurevin, Mohsin Shan, Shaoyi Huang, MD Amit Hasan, Caiwen Ding, Omer Khan
HPCA 2024 -
Evaluating Emerging AI/ML Accelerators: IPU, RDU, and NVIDIA/AMD GPUs
Hongwu Peng, Caiwen Ding, Tong Geng, Sutanay Choudhury, Kevin Barker, Ang Li
ICPE 2024 -
Quasar-ViT: Hardware-Oriented Quantization-Aware Architecture Search for Vision Transformers
Zhengang Li, Alec Lu, Yanyue Xie, Zhenglun Kong, Mengshu Sun, Hao Tang, Zhong Jia Xue, Peiyan Dong, Caiwen Ding, Yanzhi Wang, Xue Lin, Zhenman Fang
ICS 2024 -
A Fully-Customized RTL-to-GDS Design Automation Flow for Adiabatic Quantum-Flux-Parametron Superconducting Circuits
Yanyue Xie, Peiyan Dong, Geng Yuan, Zhengang Li, Masoud Zabihi, Chao Wu, Sung-En Chang, Xufeng Zhang, Xue Lin, Caiwen Ding, Nobuyuki Yoshikawa, Olivia Chen, Yanzhi Wang
DATE 2024 -
LinGCN: Structural Linearized Graph Convolutional Network for Homomorphically Encrypted Inference
Hongwu Peng*, Ran Ran*, Yukui Luo, Jiahui Zhao, Shaoyi Huang, Kiran Thorat, Tong Geng, Chenghong Wang, Xiaolin Xu, Wujie Wen, Caiwen Ding
NeurIPS 2023 -
AQ2PNN: Enabling Two-party Privacy-Preserving Deep Neural Network Inference with Adaptive Quantization
Yukui Luo, Nuo Xu, Hongwu Peng, Chenghong Wang, Shijin Duan, Kaleel Mahmood, Wujie Wen, Caiwen Ding, Xiaolin Xu
MICRO 2023 -
Accel-GCN: High-Performance GPU Accelerator Design for Graph Convolution Networks
Xi Xie*, Hongwu Peng*, MD Amit Hasan, Shaoyi Huang, Jiahui Zhao, Haowen Fang, Wei Zhang, Tong Geng, Omer Khan, Caiwen Ding
ICCAD 2023 -
AutoReP: Automatic ReLU Replacement for Fast Private Network Inference
Hongwu Peng*, Shaoyi Huang*, Tong Zhou*, Yukui Luo, Chenghong Wang, Zigeng Wang, Jiahui Zhao, Xi Xie, Ang Li, Tony Geng, Kaleel Mahmood, Wujie Wen, Xiaolin Xu, Caiwen Ding
ICCV 2023 -
SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically Encrypted Neural Network Inference
Ran Ran, Xinwei Luo, Wei Wang, Tao Liu, Gang Quan, Xiaolin Xu, Caiwen Ding, Wujie Wen
ICML 2023 -
Spectral-DP: Differentially Private Deep Learning through Spectral Perturbation and Filtering
Ce Feng*, Nuo Xu*, Wujie Wen, Parv Venkitasubramaniam, Caiwen Ding
IEEE S&P (Oakland) 2023 -
Towards Lossless Head Pruning through Automatic Peer Distillation for Large Language Models
Bingbing Li, Zigeng Wang, Shaoyi Huang, Mikhail Bragin, Ji Li, Caiwen Ding
IJCAI 2023 -
TANGO: Re-Thinking Quantization for Graph Neural Network Training on GPUs
Shiyang Chen, Da Zheng, Caiwen Ding, Chengying Huan, Yuede Ji, Hang Liu
SC 2023 -
You Need Multiple Exiting: Dynamic Early Exiting for Accelerating Unified Vision Language Model
Shengkun Tang, Yaqing Wang, Zhenglun Kong, Tianchi Zhang, Yao Li, Caiwen Ding, Yanzhi Wang, Yi Liang, Dongkuan Xu
CVPR 2023 -
Accelerating Dataset Distillation via Model Augmentation
Lei Zhang*, Jie Zhang*, Bowen Lei, Subhabrata Mukherjee, Xiang Pan, Bo Zhao, Caiwen Ding, Yao Li, Dongkuan Xu
CVPR 2023 -
Creating a Dataset Supporting Translation Between OpenMP Fortran and C++ Code
Bin Lei, Caiwen Ding, Le Chen, Pei-Hung Lin, Chunhua Liao
HPEC 2023 Outstanding Student Paper Award -
PASNet: Polynomial Architecture Search Framework for Two-party Computation-based Secure Neural Network Deployment
Hongwu Peng*, Shanglin Zhou*, Yukui Luo*, Nuo Xu, Shijin Duan, Ran Ran, Jiahui Zhao, Chenghong Wang, Tong Geng, Wujie Wen, Xiaolin Xu, Caiwen Ding
DAC 2023 -
Physics-aware Roughness Optimization for Diffractive Optical Neural Networks
Shanglin Zhou*, Yingjie Li*, Minhan Lou, Weilu Gao, Zhijie Shi, Cunxi Yu, Caiwen Ding
DAC 2023 -
Dynamic Sparse Training via Balancing the Exploration-Exploitation Trade-off
Shaoyi Huang, Bowen Lei, Dongkuan Xu, Hongwu Peng, Yue Sun, Mimi Xie, Caiwen Ding
DAC 2023 -
Neurogenesis Dynamics-inspired Spiking Neural Network Training Acceleration
Shaoyi Huang, Haowen Fang, Kaleel Mahmood, Bowen Lei, Nuo Xu, Bin Lei, Yue Sun, Dongkuan Xu, Wujie Wen, Caiwen Ding
DAC 2023 -
Workload Balancing to Unlock Extreme Parallelism for Graph Neural Network Acceleration
Mohsin Shan, Deniz Gurevin, Jared Nye, Caiwen Ding, Omer Khan
ISPASS 2023 -
Uncertainty Quantification of Collaborative Detection for Self-Driving
Sanbao Su, Yiming Li, Sihong He, Songyang Han, Chen Feng, Caiwen Ding, Fei Miao
ICRA 2023 -
FORMS: Fine-grained Polarized ReRAM-based In-situ Computation for Mixed-signal DNN Accelerator
Geng Yuan*, Payman Behnam*, Ali Shafiee, Zhengang Li, Xiaolong Ma, Hang Liu, Xuehai Qian, Mahdi Bojnordi, Yanzhi Wang, Caiwen Ding
ISCA 2021 -
CirCNN: Accelerating and Compressing Deep Neural Networks Using Block-Circulant Weight Matrices
Caiwen Ding, Yanzhi Wang, Siyu Liao, Zhe Li, Yu Bai, et al.
MICRO 2017 -
REQ-YOLO: A Resource-Aware, Efficient Quantization Framework for Object Detection on FPGAs
Caiwen Ding*, Shuo Wang*, Ning Liu, Kaidi Xu, Yanzhi Wang, Yun Liang
FPGA 2019 -
E-RNN: Design Optimization for Efficient Recurrent Neural Networks in FPGAs
Zhe Li*, Caiwen Ding*, Siyue Wang, Wujie Wen, Youwei Zhuo, Chang Liu, Qinru Qiu, Wenyao Xu, Xue Lin, Yanzhi Wang
HPCA 2019 -
Analyzing and Defending against Membership Inference Attacks in Natural Language Processing Classification
Yijue Wang, Nuo Xu, Shaoyi Huang, Kaleel Mahmood, Dan Guo, Caiwen Ding, Wujie Wen, Sanguthevar Rajasekaran
IEEE BigData 2022 -
Cryptographic Inferences for Video Deep Neural Networks
Bingyu Liu, Rujia Wang, Zhongjie Ba, Shanglin Zhou, Caiwen Ding, Yuan Hong
CCS 2022 (Poster) -
On the Design of Quantum Graph Convolutional Neural Network in the NISQ Era and Beyond
Zhirui Hu, Jinyang Li, Zhenyu Pan, Shanglin Zhou, Lei Yang, Caiwen Ding, Omer Khan, Tong Geng, Weiwen Jiang
ICCD 2022 -
Towards Real-time Temporal Graph Learning
Deniz Gurevin, Mohsin Shan, Tong Geng, Weiwen Jiang, Caiwen Ding, Omer Khan
ICCD 2022 -
CoDG-ReRAM: An Algorithm-Hardware Co-design to Accelerate Semi-Structured GNNs on ReRAM
Yixuan Luo*, Payman Behnam*, Kiran Thorat, Zhuo Liu, Hongwu Peng, Shaoyi Huang, Shu Zhou, Omer Khan, Alexey Tumanov, Caiwen Ding, Tong Geng
ICCD 2022 -
Towards Sparsification of Graph Neural Networks
Hongwu Peng*, Deniz Gurevin*, Shaoyi Huang, Tong Geng, Weiwen Jiang, Omer Khan, Caiwen Ding
ICCD 2022 -
EVE: Environmental Adaptive Neural Network Models for Low-power Energy Harvesting System
Sahidul Islam*, Shanglin Zhou*, Ran Ran, Yu-Fang Jin, Wujie Wen, Caiwen Ding, Mimi Xie
ICCAD 2022 -
All-in-One: A Highly Representative DNN Pruning Framework for Edge Devices with Dynamic Power Management
Yifan Gong, Zheng Zhan, Pu Zhao, Yushu Wu, Chao Wu, Caiwen Ding, Weiwen Jiang, Minghai Qin, Yanzhi Wang
ICCAD 2022 -
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm
Shaoyi Huang*, Dongkuan Xu*, Ian En-Hsu Yen, Yijue Wang, Sung-En Chang, Bingbing Li, Shiyang Chen, Mimi Xie, Sanguthevar Rajasekaran, Hang Liu, Caiwen Ding
ACL 2022 -
A Length Adaptive Algorithm-Hardware Co-design of Transformer on FPGA Through Sparse Attention and Dynamic Pipelining
Hongwu Peng*, Shaoyi Huang*, Shiyang Chen, Bingbing Li, Tong Geng, Ang Li, Weiwen Jiang, Wujie Wen, Jinbo Bi, Hang Liu, Caiwen Ding
DAC 2022 Publicity Paper -
QuClassi: A Hybrid Deep Neural Network Architecture based on Quantum State Fidelity
Samuel A. Stein, Betis Baheri, Daniel Chen, Ying Mao, Qiang Guan, Ang Li, Shuai Xu, Caiwen Ding
MLSys 2022 -
Enabling Super-Fast Deep Learning on Tiny Energy-Harvesting IoT Devices
Sahidul Islam, Jieren Deng, Shanglin Zhou, Chen Pan, Caiwen Ding, Mimi Xie
DATE 2022 -
TAG: Transformer Attack from Gradient
Jieren Deng*, Yijue Wang*, Ji Li, Chenghong Wang, Chao Shang, Hang Liu, Sanguthevar Rajasekaran, Caiwen Ding
EMNLP 2021 (Findings) -
A Secure and Efficient Federated Learning Framework for NLP
Jieren Deng*, Chenghong Wang*, Xianrui Meng, Yijue Wang, Ji Li, Sheng Lin, Shuo Han, Fei Miao, Sanguthevar Rajasekaran, Caiwen Ding
EMNLP 2021 (Oral) -
E.T.: Re-Thinking Self-Attention for Transformer Models on GPUs
Shiyang Chen*, Shaoyi Huang*, Santosh Pandey, Bingbing Li, Guang Gao, Long Zheng, Caiwen Ding, Hang Liu
SC 2021 -
Dr.Top-k: Delegate-Centric Top-k Computation on GPUs
Anil Gaihre, Da Zheng, Scott Weitze, Lingda Li, Shuaiwen Leon Song, Caiwen Ding, Xiaoye S Li, Hang Liu
SC 2021 -
BFL-DISCO: Federated Generative Adversarial Network for Graph-based Molecule Drug Discovery
Daniel Manu, Yi Sheng, Junhuan Yang, Jieren Deng, Tong Geng, Ang Li, Caiwen Ding, Weiwen Jiang, Lei Yang
ICCAD 2021 -
Optimizing FPGA-based Accelerator Design for Large-Scale Molecular Similarity Search
Hongwu Peng, Shiyang Chen, Zhepeng Wang, Junhuan Yang, Scott Weitze, Tong Geng, Ang Li, Jinbo Bi, Minghu Song, Weiwen Jiang, Hang Liu, Caiwen Ding
ICCAD 2021 -
Exploration of Quantum Neural Architecture by Mixing Quantum Neuron Designs
Zhepeng Wang, Zhiding Liang, Shanglin Zhou, Caiwen Ding, Jinjun Xiong, Yiyu Shi, Weiwen Jiang
ICCAD 2021 (Invited) -
Enabling Retrain-free Deep Neural Network Pruning using Surrogate Lagrangian Relaxation
Deniz Gurevin*, Mikhail Bragin*, Caiwen Ding*, Shanglin Zhou, Lynn Pepin, Bingbing Li, Fei Miao
IJCAI 2021 -
Against Membership Inference Attack: Pruning is All You Need
Yijue Wang, Chenghong Wang, Zigeng Wang, Shanglin Zhou, Hang Liu, Jinbo Bi, Caiwen Ding, Sanguthevar Rajasekaran
IJCAI 2021 -
A Compression-Compilation Framework for On-mobile Real-time BERT Applications
Wei Niu, Zhenglun Kong, Geng Yuan, Weiwen Jiang, Jiexiong Guan, Caiwen Ding, Pu Zhao, Sijia Liu, Bin Ren, Yanzhi Wang
IJCAI 2021 (Demo) -
Dancing along Battery: Enabling Transformer with Run-time Reconfigurability on Mobile Devices
Yuhong Song, Weiwen Jiang, Bingbing Li, Panjie Qi, Qingfeng Zhuge, Edwin Hsing-Mean Sha, Sakyasingha Dasgupta, Yiyu Shi, Caiwen Ding
DAC 2021 -
A Unified DNN Weight Compression Framework using Reweighted Optimization Methods
Tianyun Zhang, Xiaolong Ma, Zheng Zhan, Shanglin Zhou, Caiwen Ding, Makan Fardad, Yanzhi Wang
DAC 2021 -
TinyADC: Peripheral Circuit-aware Weight Pruning Framework for Mixed-signal DNN Accelerators
Geng Yuan*, Payman Behnam*, Yuxuan Cai, Ali Shafiee, Jingyan Fu, Zhiheng Liao, Zhengang Li, Xiaolong Ma, Jieren Deng, Jinhui Wang, Mahdi Bojnordi, Yanzhi Wang, Caiwen Ding
DATE 2021 Best Paper Award Nomination -
Efficient Transformer-based Large Scale Language Representations using Hardware-friendly Block Structured Pruning
Bingbing Li*, Zhenglun Kong*, Tianyun Zhang, Ji Li, Zhengang Li, Hang Liu, Caiwen Ding
EMNLP 2020 (Findings) -
FTRANS: Energy-Efficient Acceleration of Transformers using FPGA
Bingbing Li, Santosh Pandey, Haowen Fang, Yanjun Lyv, Ji Li, Jieyang Chen, Mimi Xie, Lipeng Wan, Hang Liu, Caiwen Ding
ISLPED 2020 -
Ftdl: A Tailored FPGA-overlay for Deep Learning with High Scalability
Runbin Shi, Yuhao Ding, Xuechao Wei, He Li, Hang Liu, Hayden So, Caiwen Ding
DAC 2020 -
A Stochastic-computing Based Deep Learning Framework using Adiabatic Quantum-flux-parametron Superconducting Technology
Ruizhe Cai, Ao Ren, Olivia Chen, Ning Liu, Caiwen Ding, Xuehai Qian, Jie Han, Wenhui Luo, Yoshikawa Nobuyuki, Yanzhi Wang
ISCA 2019 -
Towards Ultra-high Performance and Energy Efficiency of Deep Learning Systems: An Algorithm-Hardware Co-optimization Framework
Yanzhi Wang, Caiwen Ding, Gen Yuan, Siyu Liao, Zhe Li, Xiaolong Ma, Bo Yuan, Xuehai Qian, Jian Tang, Qinru Qiu, Xue Lin
AAAI 2018 -
VIBNN: Hardware Acceleration of Bayesian Neural Networks
Ruizhe Cai, Ao Ren, Ning Liu, Caiwen Ding, Luhao Wang, Xuehai Qian, Massoud Pedram, Yanzhi Wang
ASPLOS 2018 -
FFT-Based Deep Learning Deployment in Embedded Systems
Sheng Lin, Ning Liu, Mahdi Nazemi, Hongjia Li, Caiwen Ding, Yanzhi Wang, Massoud Pedram
DATE 2018 Best Paper Award Nomination -
SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing
Ao Ren, Zhe Li, Caiwen Ding, Qinru Qiu, Yanzhi Wang, Ji Li, Xuehai Qian, Bo Yuan
ASPLOS 2017
Additional Journal Publications
-
Collaborative Multi-Object Tracking with Conformal Uncertainty Propagation
Sanbao Su, Songyang Han, Yiming Li, Zhili Zhang, Chen Feng, Caiwen Ding, Fei Miao
IEEE RA-L 2024 -
A Multi-Agent Reinforcement Learning Approach For Safe and Efficient Behavior Planning Of Connected Autonomous Vehicles
Songyang Han, Shanglin Zhou, Jiangwei Wang, Lynn Pepin, Caiwen Ding, Jie Fu, Fei Miao
IEEE T-ITS 2023 -
Surrogate Lagrangian Relaxation: A Path To Retrain-free Deep Neural Network Pruning
Shanglin Zhou, Mikhail A Bragin, Deniz Gurevin, Lynn Pepin, Fei Miao, Caiwen Ding
ACM TODAES 2023 -
Exploiting Intrinsic Redundancies in Dynamic Graph Neural Networks For Processing Efficiency
Deniz Gurevin, Caiwen Ding, Omer Khan
IEEE CAL 2023 -
Deep Learning for Automated Quantification of Irradiation Defects in TEM Data
Rajat Sainju, Graham Roberts, Wei-Ying Chen, Brian Hutchinson, Qian Yang, Caiwen Ding, Danny J Edwards, Meimei Li, Yuanyuan Zhu
Microscopy and Microanalysis 2023 -
DefectTrack: A Deep Learning-based Multi-Object Tracking Algorithm for Quantitative Defect Analysis of In-situ TEM Videos in Real-time
Yuanyuan Zhu, Rajat Sainju, Wei-Ying Chen, Samuel Schaefer, Qian Yang, Caiwen Ding, Meimei Li
Nature Scientific Reports 2022 -
Memristor-Based Spectral Decomposition of Matrices and Applications
Zeinab S. Jalali, Chenghong Wang, Griffin Kearney, Geng Yuan, Caiwen Ding, Yinan Zhou, Yanzhi Wang, Sucheta Soundarajan
IEEE TC 2022 -
Mapping Transformation Enabled High-Performance and Low-Energy Memristor-Based DNNs
Oli-Uz-Zaman, Md, Saleh Ahmad Khan, Geng Yuan, Zhiheng Liao, Jingyan Fu, Caiwen Ding, Yanzhi Wang, Jinhui Wang
JLPEA 2022 -
Real-time Multi-Object Tracking of Ion-irradiation Induced Defects in In Situ TEM Videos
Rajat Sainju, Wei-Ying Chen, Samuel Schaefer, Qian Yang, Caiwen Ding, Meimei Li, Yuanyuan Zhu
Microscopy and Microanalysis 2022 -
Tracking and Understanding Nanocatalyst Sintering and Regeneration using Deep Learning-assisted In Situ Environmental TEM
Rajat Sainju, Steven Suib, Caiwen Ding, Yuanyuan Zhu
Microscopy and Microanalysis 2021 -
Graph-Based Shape Analysis for Heterogeneous Geometric Datasets: Similarity, Retrieval and Substructure Matching
Jiangce Chen, Horea T. Ilies, Caiwen Ding
Computer-Aided Design 2021 -
Aerial Manipulation Using a Novel Unmanned Aerial Vehicle Cyber-Physical System
Caiwu Ding, Hongwu Peng, Lu Lu, Caiwen Ding
IEEE TCCPS Letter 2021 -
TRUST: Triangle Counting Reloaded on GPUs
Santosh Pandey, Zhibin Wang, Sheng Zhong, Chen Tian, Bolong Zheng, Xiaoye Li, Lingda Li, Adolfy Hoisie, Caiwen Ding, Dong Li, Hang Liu
IEEE TPDS 2021 -
Design, Sensing, and Control of a Novel UAV Platform for Aerial Drilling
Caiwu Ding, Lu Lu, Cong Wang, Caiwen Ding
IEEE RA-L 2021 -
An Exploratory Approach to Deriving Nutrition Information of Restaurant Food from Crowdsourced Food Images
Xiang Chen, Evelyn Johnson, Aditya Kulkarni, Caiwen Ding, Natalie Ranelli, Yanyan Chen, Ran Xu
Nutrients 2021 -
Normalization and Dropout for Stochastic Computing-based Deep Convolutional Neural Networks
Ji Li, Zihao Yuan, Zhe Li, Ao Ren, Caiwen Ding, Jeffrey Draper, Shahin Nazarian, Qinru Qiu, Bo Yuan, Yanzhi Wang
Integration, the VLSI Journal 2019 -
Dynamic Reconfiguration of Thermoelectric Generators for Vehicle Radiators Energy Harvesting under Location-dependent Temperature
Jaemin Kim, Donkyu Baek, Caiwen Ding, Sheng Lin, Donghwa Shin, Xue Lin, et al.
IEEE TVLSI 2018 -
HEIF: Highly Efficient Stochastic Computing based Inference Framework for Deep Neural Networks
Zhe Li, Ji Li, Ao Ren, Ruizhe Cai, Caiwen Ding, Xuehai Qian, Jeffrey Draper, Bo Yuan, Jian Tang, Qinru Qiu, Yanzhi Wang
IEEE TCAD 2018 -
Reconfigurable Photovoltaic Systems for Electric Vehicles
Caiwen Ding, Hongjia Li, Weiwei Zheng, Xue Lin, Yanzhi Wang
IEEE Design & Test 2018 -
Multisource Indoor Energy Harvesting for Nonvolatile Processors
Caiwen Ding, Ning Liu, Yanzhi Wang, Ji Li, Soroush Heidari, Jingtong Hu, Yongpan Liu
IEEE Design & Test 2017 -
Luminescent Solar Concentrator-Based Reconfigurable Photovoltaic System for EV/HEV
Yanzhi Wang, Caiwen Ding
IEEE TCCPS Letter 2016
Workshop & Poster Publications
-
Shared Information-Based Safe And Efficient Behavior Planning For Connected Autonomous Vehicles
Songyang Han, Shanglin Zhou, Lynn Pepin, Jiangwei Wang, Caiwen Ding, Fei Miao
AAAI DCAA Workshop 2023 Best Paper Award -
ESMFL: Efficient and Secure Models for Federated Learning
Sheng Lin, Chenghong Wang, Hongjia Li, Jieren Deng, Yanzhi Wang, Caiwen Ding
NeurIPS Workshop 2020 -
Ftdl: An FPGA-tailored Architecture for Deep Learning Applications
Runbin Shi, Yuhao Ding, Xuechao Wei, Hang Liu, Hayden So, Caiwen Ding
FPGA 2020 (Poster) -
A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration Framework
Zheng Zhan, Yifan Gong, Zhengang Li, Wei Niu, Xiaolong Ma, Bin Ren, Caiwen Ding, Xue Lin, Yanzhi Wang
BARC 2020 -
Accelerating Transformers-based Large-Scale Language Representation using FPGA
Shanglin Zhou, Bingbing Li, Caiwen Ding
BARC 2020 -
Deep Compressed Pneumonia Detection for Low-Power Embedded Device
Hongjia Li, Sheng Lin, Ning Liu, Caiwen Ding, Yanzhi Wang
MICCAI Workshop 2019 -
Efficient Recurrent Neural Networks using Structured Matrices in FPGAs
Zhe Li, Shuo Wang, Caiwen Ding, Qinru Qiu, Yanzhi Wang, Yun Liang
ICLR Workshop 2018